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Abstract

There are growing interests in integrating exter-
nal knowledge into language models among NLP
researchers. While some works try to use ex-
plicit knowledge resources including knowledge
graph and knowledgeable text, we propose KR2
(Knowledge Resource and Reader) to utilize im-
plicit information from pre-trained language mod-
els as external knowledge. When facing a spe-
cific NLP task, the intermediate representations
of a frozen in-domain pre-trained language model
are extracted and serve as K(nowledge) Resource,
which can help improve the performance of the
Knowledge Reader (task model). We conduct ex-
periments on multilingual fine-tuning and physical
commonsense reasoning tasks. Consistent gains
are obtained compared with strong baselines. We
also empirically compare our approach with knowl-
edge distillation, a well-recognized method to trans-
fer implicit knowledge between models, to illus-
trate the effectiveness of our approach.

1 Introduction

With the rapid development of computing devices
and the increasing amount of available data, it is
now much easier for NLP researchers to train large-
scale language models and boost task performance.
Recently, there has been growing interest in inte-
grating explicit and implicit external knowledge
into language models. For example, explicit knowl-
edge including entities and relations in knowledge
graphs are converted into contextualized embed-
dings (KG) or knowledgeable text (KT), and they
are fused with the input text or intermediate repre-
sentation of language models. This approach not
only leads to significant gains on knowledge inten-
sive tasks (Liu et al., 2019a; Zhang et al., 2019),
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Figure 1: Comparison between our KR2 model with
other types of knowledge.

but also helps with general Natural Language Un-
derstanding (NLU) (Xu et al., 2021). Meanwhile,
researchers also find that the output of a higher-
capacity or a better performing trained model can
be used as implicit knowledge to benefit the target
task. This approach is known as Knowledge Distil-
lation (KD)(Hinton et al., 2015), which generalizes
well among different model architectures and tasks.

In this paper, we explore new possibilities of
incorporating implicit knowledge from existing
language models when fine-tuning our models
on downstream tasks. The differences between
our approach and previous works are illustrated
in Figure 1. As deep pre-trained models have
"seen" massive amount of data and can be used
for a wide range of tasks, the models are consid-
ered to contain diverse implicit knowledge inside.
We call these models KResource (K(nowledge)
Resource)). The task model, which is trained
for combining knowledge from KResource and
solving the downstream tasks, is referred to as



KReader(K(nowledge) Reader)), so we name our
method KR2 (Knowledge Resource and Reader).

When facing a specific NLP task, we first extract
embeddings from the frozen KResource models.
The parameters of KResource models are frozen
during the fine-tuning to better keep the knowledge
inside the models. Though the size, architecture
and pre-training purpose of KResource models may
be different, the embeddings of KResource mod-
els show how these models perceive and represent
the input sentences, so the embeddings can be con-
sidered a kind of implicit knowledge in the KRe-
source models. We transform the embeddings of
the KResource models and concat the embeddings
from KResource with the input of KReader. The
KReader model takes the input and is fine-tuned on
the target task.

We conduct experiments on diverse settings and
tasks, including multilingual fine-tuning and phys-
ical commonsense reasoning. Experiments show
that implicit knowledge from KResource models
can significantly boost the KReader performance
on downstream tasks. We also compare our method
with knowledge distillation, as they both have the
purpose of using the implicit knowledge in one
model (KResource/Teacher) to improve another
model (KReader/Student). We find that when
the Teacher/KResouce model is weaker than the
KReader/Student model, our method performs sig-
nificantly better than knowledge distillation, which
demonstrates the usefulness of our method.

2 Approach

Given the input text with length T , the length of
input tokens to KReader and KResource models
are l1 and l2 respectively. Assuming KResource is
a L layers Transformer encoder, the dimension of
the hidden states of KResource model is h2. The
intermediate representation of KResource model is
H0:L

KResource ∈ Rl2×(L+1)×h2 size tensor (the word
embeddings are also included).

The dimension of hidden states of the KReader
model is h1. As h1 may be not equal to h2, we
need to project the intermediate representation of
KResource model into G0

KReader ∈ Rl2×h1 dimen-
sion. There are several ways for the transforma-
tion. One natural way is to directly project the
(L+ 1) ∗ h2 dimension tensor into h1 dimensions.
To avoid high computation complexity, we consider
the alignment between positions in different layers.

Figure 2: An illustration of our approach.

We define

ĤKResource =
L∑
i=0

ωiHi
KResource

The fusion weight {ωi}Li=0 can either be trainable
parameters, uniform distribution over some or all
the layers, or one-hot vector selecting one specific
layer. We will empirically study the effects of dif-
ferent strategies in Section 3. We denote the pro-
jection from dimension m to n (implemented by
several layers of MLP) as fm:n. The projection
process can be written as

G0
KReader = fh2:h1(ĤKResource)

In this paper, we only consider cases where h2 =
h1, so we omit this projection process.

The input to the KReader model can be written
as follows

Ĥ
0
KReader = Concat(H0

KReader,G0
KReader)

The KReader model is then fine-tuned on the target
task. The parameters of the KResource are kept
frozen during training.

3 Experiments

We conduct experiments on diverse settings and
tasks to verify the effectiveness of our methods.
With appropriate choice of KResource, our method
achieves significant gains compared with strong
baselines.



Domain Multilingual POS tagging Physical Commonsense Reasoning
Tasks De Ko Ja Zh Ar Es SNLI SWAG PIQA HellaSwag

Model Config XLM-R/Monolingual LMs BERT/OSCAR
KReader 84.3 45.6 48.9 61.5 62.2 81.8 89.3 78.1 61.7 38.7

KResource 83.8 25.8 46.4 48.8 58.5 81.6 88.6 65.5 61.6 35.5
KReader2 84.6 46.2 49.5 61.5 62.0 82.1 89.2 77.8 62.7 38.0

KR2 84.7 46.2 50.0 61.9 62.8 82.4 89.4 78.4 63.3 38.0

Table 1: Performance of our method on multilingual POS tagging and physical commonsense reasoning
tasks. Results are averaged over three seeds. Model Config A/B means A is KReader and B is KResource.
KReader/KResource denotes directly fine-tuning KReader/KResource. KReader2 denotes using the same KRe-
source as KReader. Hyperparameters of fine-tuning KReader and KResource are kept the same.

3.1 Settings

Multilingual Fine-tuning We use the XLM-
Roberta (Conneau et al., 2020) base model as
the KReader model because XLM-Roberta (Con-
neau et al., 2020) is a well-recognized strong and
general multilingual encoder. Monolingual pre-
trained BERT (Devlin et al., 2019a) and RoBERTa
(Liu et al., 2019b) models are used as KResource.
Though monolingual pre-trained models may have
inferior performance compared with XLM-Roberta
as a result of lack of computing resource, they have
better monolingual tokenizers and are trained on
monolingual corpora only, so we believe they con-
tain more monolingual implicit knowledge. The
details of these models are shown in Appendix A.
We conduct experiments on multilingual Part of
Speech tagging (Zeman et al., 2019) with transla-
tion data in that language. We train 10 epochs with
batch size 32 and learning rate 2e-5.

Physical Commonsense Reasoning The data of
Physical Commonsense Reasoning datasets mainly
comes from image/video captioning datasets or de-
scriptions of a physical process. We choose four
datasets in this setting. SNLI (Bowman et al., 2015)
is a Natural Language Inference (NLI) dataset that
includes content from the Flickr 30k corpus (Plum-
mer et al., 2016) and the VisualGenome corpus
(Krishna et al., 2016). The PIQA (Bisk et al., 2019)
dataset introduces the task of multiple choice phys-
ical commonsense reasoning. The SWAG dataset
(Zellers et al., 2018) is also a multiple choice ques-
tions answer dataset. Each question is a video
caption from LSMDC (Rohrbach et al., 2017) or
ActivityNet Captions (Krishna et al., 2017), with
four answer choices about what might happen next
in the scene. The HellaSwag (Zellers et al., 2019)
dataset is a more challenging and realistic verison
of SWAG. All questions in HellaSwag are from

ActivityNet Captions. We use BERT(Devlin et al.,
2019a) as the KReader model and OSCAR encoder
(Li et al., 2020) as the KResource model. OSCAR
is initialized with BERT and primarily trained as a
vision-language model. Though training on vision-
language tasks may harm the performance of OS-
CAR on text-only tasks (catastrophic forgetting),
OSCAR gets more implicit knowledge related to
the visual and physical world which is likely to
benefit physical commonsense reasoning tasks.

3.2 Results

In Table 1, we compare our method KR2 against
several strong baselines, including directly fine-
tuning the KReader model (KReader), directly
fine-tuning the KResource model (KResource) and
using the same KResource model as KReader
model (KReader2). We find that even directly fine-
tuning the KResource model doesn’t outperform
the KReader model, its intermediate representa-
tions can help to boost the performance of our
method KR2. As KReader2 brings gains against
the KReader baseline but still perform worse than
KR2 model, we can see that the improvement of
KR2 not only comes from integrating more features
into model input, but also is a result of diverse im-
plicit knowledge in KResource model.

4 Analysis

4.1 Choice of Layer Fusion Weight

In this part, we discuss different strategies for se-
lecting the layer fusion weight. There are several
potential strategies, including trainable weighted
fusion, average over some or all the layers and se-
lecting one specific layer. We conduct experiments
in multilingual Part-of-Speech tagging fine-tuning
tasks. We choose Germany, Chinese, Arabic and
Spainish languages. The results are shown in Table



POS De Zh Ar Es AVG
XLM-R/Monolingual LMs

KReader 84.3 61.5 62.2 81.8 72.5
Layer 0 84.6 61.4 63.0 82.5 72.9
Layer 1 84.7 61.5 62.4 82.4 72.8
Layer 3 84.7 62.4 61.6 82.4 72.8
Layer 5 84.4 61.9 62.6 82.5 72.9
Layer 7 84.6 61.5 63.1 82.3 72.9
Layer 9 84.8 61.5 62.7 82.5 72.9
Layer 11 84.6 62.0 62.7 82.1 72.9
AVG(All) 84.5 61.9 62.7 82.3 72.9

AVG(Last 4) 84.7 61.9 62.8 82.4 73.0
Fuse 84.7 62.2 63.0 82.5 73.1

Table 2: Comparison between different layer fusion
strategies. Results are averaged over three seeds. Train-
able weights yield the best results. Layer 0 denotes
word embeddings.

2. We find that embeddings from later layers con-
tain more beneficial knowledge than front layers.
To achieve stable improvements across different
languages and simplify the training process, we
choose the average of last four layers as the fusion
strategy.

4.2 Comparison with Knowledge Distillation

Knowledge Distillation (Hinton et al., 2015) has
been considered a very effective way to transfer
implicit knowledge from one model to another,
while our method has the same purpose. We empir-
ically compare knowledge distillation with our ap-
proach. Details of knowledge distillation is shown
in Appendix B. As shown in Table 3, we find that
though knowledge distillation can improve the per-
formance when the KResource/Teacher is weak,
our method brings more stable and significant gains.
When the KResource/Teacher is stronger than
KReader/Student model, both KR2 and KD can
help improve the model performance. Note that in
knowledge distillation we use a KResource/Teacher
model fine-tuned on the target task, in KR2 we
use a frozen pre-trained KResource/Teacher model.
When there exists many in-domain but weaker pre-
trained models or fine-tuned teacher models are
unavailable, our method is a simpler and more ef-
fective way to utilize the implicit knowledge inside
these models.

Domain Multilingual POS tagging
Tasks De Ko Ja Zh Ar Es

KReader(A) 84.3 45.6 48.9 61.5 62.2 81.8
KR2(B-A) 84.7 46.2 50.0 61.9 62.8 82.4
KD(B-A) 84.6 46.1 48.6 61.3 62.3 82.0

KResource(B) 83.8 25.8 46.4 48.8 58.5 81.6
KR2(A-B) 84.4 25.9 46.8 48.7 59.2 82.6
KD(A-B) 84.4 26.3 46.6 49.2 59.4 82.4

Table 3: Comparison between knowledge distillation
(KD) and KR2. Results are averaged over three seeds.
A-B means that A is the KResource/Teacher and B is
the KReader/Student.

5 Related Works

Explicit Knowledge Enhanced NLP Many
works have tried to incorporate explicit knowledge
from Knowledge Graph since the emergence of
BERT(Devlin et al., 2019b). There are several di-
rections in this field. Several works (Sun et al.,
2019; Lauscher et al., 2020; Rosset et al., 2021;
Xiong et al., 2019) utilize entity representation
in the knowledge graph or use the entity as pre-
training tasks for language models. Some other
works (Sun et al., 2019; He et al., 2020; Yu et al.,
2020; Wang et al., 2020a) perform joint training
between knowledge graph neural networks and lan-
guage models. These works directly use knowl-
edge from knowledge graph training. We call these
methods KG. There are several other works called
KT that automatically convert entities and relations
in knowledge graph into human-readable text and
combine these text with the task input (Joshi et al.,
2021; Liu et al., 2019a; Agarwal et al., 2021).

Knowledge Distillation Enhanced NLP Knowl-
edge Distillation (Hinton et al., 2015) has proven
to be a very effective method to transfer knowl-
edge in one model to another. With knowledge
distilled from high-capacity and well-performing
teacher models, supreme performance can be ob-
tained across a wide range of NLP tasks (Sanh
et al., 2020; Jiao et al., 2020; Yin et al., 2021).

6 Conclusion

In this paper, we present a new way to integrate
implicit knowledge from frozen pre-trained mod-
els into language model fine-tuning. Extensive
empirical results validate the effectiveness of our
approach. Comparison with knowledge distillation
illustrates that our method is an effective way to



transfer implicit knowledge between models.
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Hladká, Jaroslava Hlaváčová, Florinel Hociung, Pet-
ter Hohle, Jena Hwang, Takumi Ikeda, Radu Ion,
Elena Irimia, O. lájídé Ishola, Tomáš Jelínek, An-
ders Johannsen, Fredrik Jørgensen, Markus Juutinen,
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hiro Nikaido, Vitaly Nikolaev, Rattima Nitisaroj,
Hanna Nurmi, Stina Ojala, Atul Kr. Ojha, Adédayo.
Olúòkun, Mai Omura, Petya Osenova, Robert
Östling, Lilja Øvrelid, Niko Partanen, Elena Pas-
cual, Marco Passarotti, Agnieszka Patejuk, Guil-
herme Paulino-Passos, Angelika Peljak-Łapińska,
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